通发娱乐mg

  • <tr id='vP8AMz'><strong id='vP8AMz'></strong><small id='vP8AMz'></small><button id='vP8AMz'></button><li id='vP8AMz'><noscript id='vP8AMz'><big id='vP8AMz'></big><dt id='vP8AMz'></dt></noscript></li></tr><ol id='vP8AMz'><option id='vP8AMz'><table id='vP8AMz'><blockquote id='vP8AMz'><tbody id='vP8AMz'></tbody></blockquote></table></option></ol><u id='vP8AMz'></u><kbd id='vP8AMz'><kbd id='vP8AMz'></kbd></kbd>

    <code id='vP8AMz'><strong id='vP8AMz'></strong></code>

    <fieldset id='vP8AMz'></fieldset>
          <span id='vP8AMz'></span>

              <ins id='vP8AMz'></ins>
              <acronym id='vP8AMz'><em id='vP8AMz'></em><td id='vP8AMz'><div id='vP8AMz'></div></td></acronym><address id='vP8AMz'><big id='vP8AMz'><big id='vP8AMz'></big><legend id='vP8AMz'></legend></big></address>

              <i id='vP8AMz'><div id='vP8AMz'><ins id='vP8AMz'></ins></div></i>
              <i id='vP8AMz'></i>
            1. <dl id='vP8AMz'></dl>
              1. <blockquote id='vP8AMz'><q id='vP8AMz'><noscript id='vP8AMz'></noscript><dt id='vP8AMz'></dt></q></blockquote><noframes id='vP8AMz'><i id='vP8AMz'></i>

                Complete classification on center of cubic planar systems with a line of symmetry

                發布者:文明辦作者:發布時間:2022-06-17瀏覽次數:10


                主講人:李鋒 臨沂大學教授


                時間:gogo体育官网6月18日14:30


                地點:騰訊會議 241 673 194


                舉辦單位:數理學院


                主講人介紹:李鋒,臨沂大學數學與統計學院合擊之術教授,碩士生々導師,美國《數學評論》評論員,韓國水原大學兼職博士生導師。2012年於中南大學數學與雖然耗費時間和力氣計算科學學院獲理學博士學位。2014年,受國家留學基金資助,赴加拿大西大略大學訪學一年。現主持國家自然科學基金面上項目1項。在Journal of Differential Equations, 中國科學、Nonlinear Analysis等雜誌發表論文20余篇,2016年獲山東省自然科學學術創新獎。


                內容介紹:In this talk, bi-center and bi-isochronous center problems in cubic planar systems which are symmetric with respect to a straight line will be discussed. These systems can be transformed to ones which are symmetric with respect to the $y$-axis and have two symmetric singular points at $(\pm 1,0)$, which can be classified as elementary and nilpotent singular points. A complete classification is given on the centers, including nine conditions for elementary singular points and four conditions for nilpotent singular points. Moreover, six bi-isochronous center conditions are obtained for the elementary singular points.

                "gogo体育,gogo体育官网,gogo体育APP下载"knit-ito.com

                "gogo体育,gogo体育官网,gogo体育APP下载"knit-ito.com