澳门百利宫线上娱乐

  • <tr id='uv7a1J'><strong id='uv7a1J'></strong><small id='uv7a1J'></small><button id='uv7a1J'></button><li id='uv7a1J'><noscript id='uv7a1J'><big id='uv7a1J'></big><dt id='uv7a1J'></dt></noscript></li></tr><ol id='uv7a1J'><option id='uv7a1J'><table id='uv7a1J'><blockquote id='uv7a1J'><tbody id='uv7a1J'></tbody></blockquote></table></option></ol><u id='uv7a1J'></u><kbd id='uv7a1J'><kbd id='uv7a1J'></kbd></kbd>

    <code id='uv7a1J'><strong id='uv7a1J'></strong></code>

    <fieldset id='uv7a1J'></fieldset>
          <span id='uv7a1J'></span>

              <ins id='uv7a1J'></ins>
              <acronym id='uv7a1J'><em id='uv7a1J'></em><td id='uv7a1J'><div id='uv7a1J'></div></td></acronym><address id='uv7a1J'><big id='uv7a1J'><big id='uv7a1J'></big><legend id='uv7a1J'></legend></big></address>

              <i id='uv7a1J'><div id='uv7a1J'><ins id='uv7a1J'></ins></div></i>
              <i id='uv7a1J'></i>
            1. <dl id='uv7a1J'></dl>
              1. <blockquote id='uv7a1J'><q id='uv7a1J'><noscript id='uv7a1J'></noscript><dt id='uv7a1J'></dt></q></blockquote><noframes id='uv7a1J'><i id='uv7a1J'></i>

                Chaotic behavior of hyperbolic dynamical systems

                發布者:文明辦作者:發布時間:2021-12-10瀏覽次數:10

                  

                主講人:連增  四川大學教授药酒

                  

                時間:gogo体育官网12月13日10:00

                  

                地點:騰訊會議 635 745 397

                  

                舉辦單位:數理學院

                  

                主講人介紹:連增,四川大學數學學院教授。國家自然科學基金决定住委員會“傑出青年基瘟疫使者之怒金”獲得者。美國紐約大學庫◆朗研究所博士後,美國楊百翰大學數學博士,南開大學數學與應用數學學士。主要從事基礎數學領域的研究,其研究主要集中在動力系統和遍╲歷理論方向,具體內容包括隨機或無窮維動力系統的光滑遍歷理論、混沌理論和遍甘霖晶歷極值問題等。曾在國碧蓝際著名數學刊物上發表研究論文,包括Journal  of The American Mathematical Society,Memoirs of The of American Mathematical  Society,Advances in Mathematics, Journal of Differential Equations等。

                  

                內容介紹:In this talk, we will report some recent progress of the study on chaotic  behavior of hyperbolic dynamical systems, which mainly contains two parts:  (1)Existence of periodic orbits and Smale horseshoes; (2) Ergodic optimization  theory. This is based on the joint works with Wen Huang, Kening Lu, Xiao Ma,  Leiye Xu, Lai-sang Young, and Yiwei Zhang.  

                "gogo体育,gogo体育官网,gogo体育APP下载"knit-ito.com

                "gogo体育,gogo体育官网,gogo体育APP下载"knit-ito.com